УФ-обеззараживание воды: суть новой технологии очистки и сферы ее применения
Где применяется УФ-обеззараживание воды? В чем суть УФ-обеззараживания воды? Какое оборудование применяется для УФ-обеззараживания воды? Чем отличаются установки УФ-обеззараживания воды? Из чего состоит установка УФ-обеззараживания воды? Как выбирать систему УФ-обеззараживания воды?
Современные технологи позволяют очищать сразу большие объемы воды, при этом качество итогового продукта, поступающего в дома, на производственные, технические объекты остается высоким. Сразу скажем, что существуют разные методики водоочистки, удовлетворяющие требования актуальных стандартов, но одной из наиболее успешных на данный момент технологий считается ультрафиолетовое (УФ) обеззараживание воды. Благодаря ей из жидкости удаляются определенные виды загрязнений, а обработка производится в больших масштабах. Далее расскажем о данном подходе, его плюсах и минусах.
Из этой статьи вы узнаете:
-
Где применяется УФ-обеззараживание воды
-
В чем суть УФ-обеззараживания воды
-
Какое оборудование применяется для УФ-обеззараживания воды
-
Чем отличаются установки УФ-обеззараживания воды
-
Из чего состоит установка УФ-обеззараживания воды
-
Как выбирать систему УФ-обеззараживания воды
Что значит УФ-обеззараживание воды
Ультрафиолет представляет собой электромагнитное излучение, имеющие длину волны от 10 до 400 нм. Подобные волны находятся на границе видимости и рентгеновских лучей, а непосредственно излучение может быть трех видов:
-
ближнее;
-
среднее;
-
дальнее.
В процессе УФ-обеззараживания воды применяют средний ультрафиолет, чья длина волн колеблется от 200 до 400 нм, это и есть бактерицидное излучение. Наилучший результат при очистке воды достигается за счет ультрафиолетового излучения с длиной волны от 250 до 270 нм. Поэтому в установках УФ-обеззараживания длина волны обычно равна 260 нм.
Не секрет, что до начала 1990-х годов вода чаще всего очищалась посредством хлорирования. Однако позже было установлено: этот метод, будучи пригодным для промышленности, практически не подходит для получения питьевой жидкости.
Дело в том, что при обработке хлором образуются побочные, вредные для человека продукты. Вот почему на данный момент так широко распространилась дезинфекция с помощью УФ-обеззараживания воды.
Статьи, рекомендуемые к прочтению:
Сегодня данная технология активно используется также в промышленности при стерилизации сточных вод.
Широкий спектр использования метода УФ-обеззараживания воды объясняется двумя фактами: при помощи данных лучей достигается значительно более высокая продуктивность и одновременно очищаются большие объемы жидкости, нежели при использовании реагентов или фильтров.
Перечислим, где сегодня используется обеззараживание воды ультрафиолетом:
-
предприятия коммунальных служб водообеспечения;
-
пищевое производство;
-
аквапарки, бассейны;
-
обработка сточных вод;
-
школы, детские сады, центры здравоохранения;
-
автономные системы обеспечения, то есть скважины, колодцы.
Преимущества и недостатки обеззараживания воды УФ-излучением
Напомним, что ультрафиолетовым называют электромагнитное излучение, которое занимает диапазон между рентгеновским и видимым излучением, то есть длина волн колеблется в пределах 100–400 нм. Существует несколько участков спектра ультрафиолетового излучения, каждый из которых имеет свое биологическое воздействие. Участки выглядят таким образом: УФ-A (315–400 нм), УФ-B (280–315 нм), УФ-C (200–280 нм), вакуумный УФ (100–200 нм).
Участок УФ-С нередко обозначают как бактерицидный, поскольку именно он способен нейтрализовать бактерии и вирусы. По мнению специалистов, наилучшую очистку воды можно получить, используя ультрафиолетовое излучение с длиной волны 254 нм.
В данном случае речь идет о физическом методе УФ-обеззараживания воды. Он основан на фотохимических реакциях, в результате которых микроорганизмы и вирусы лишаются способности к размножению (происходит инактивация) из-за необратимых повреждений ДНК и РНК.
За счет использования бактерицидного УФ-излучения удается победить вирусы и простейших, находящихся в воде, даже если они не боятся хлорсодержащих реагентов. Немаловажно, что после обработки ультрафиолетом в жидкости не формируются вредные побочные продукты. Это правило распространяется даже на случаи, когда доза излучения превышена в несколько раз.
Еще один немаловажный факт – УФ-лампа для обеззараживания воды не влияет на органолептические свойства итогового продукта. Однако стоит понимать, что такой вид очистки лишен пролонгированного эффекта в отличие от привычной нам обработки хлором. Уже после УФ-обработки может произойти повторное микробиологическое загрязнение воды, если водораспределительные сети находятся в неудовлетворительном состоянии и на внутренних поверхностях труб образовались биопленки.
В качестве выхода из ситуации специалисты советуют совмещать две технологии: УФ-обеззараживание воды и хлорирование, что носит название «принцип мультибарьерности». Считается, что при таком подходе в качестве агента с пролонгированным действием лучше всего использовать хлорамины. Они положительно отличаются от хлора более длительным и активным действием на биопленки в трубах, поэтому все чаще применяются в водоподготовке.
Еще одна сфера, в которой крайне важна микробиологическая безопасность – это плавательные бассейны. Поэтому здесь невозможен полный отказ от хлорирования воды. Использование комбинированного метода обеззараживания требует четкого соблюдения норм содержания свободного остаточного хлора, а именно 0,1–0,3 мг/л. При хлорировании без УФ-обеззараживания этот показатель должен находиться в границах 0,3–0,5 мг/л, а значит, в 2-3 раза снижаются расходы на реагент.
Обработка сточных вод не требует дополнительных дезинфицирующих веществ, можно использовать лишь ультрафиолет. В этом случае хлорирование считается даже нежелательным, так как реагент негативно воздействует на биоценоз водоемов, куда сбрасываются стоки.
Во время очистки и исследования качества воды используется ряд стандартов и правил – именно от них отталкиваются службы, обеззараживающие жидкости. Основными регламентирующими документами по обработке воды ультрафиолетом являются методические указания МУ 2.1.4.719-98, утвержденные Министерством здравоохранения РФ, и действующий ГОСТ «Вода питьевая» Р 56237-2014.
Первый документ устанавливает минимальную дозу облучения, используемую при УФ-обеззараживании питьевой воды, а именно 16 мДж/см². Ученые доказали, что именно такая интенсивность обработки в пять раз сокращает долю патогенных организмов, а вирусов становится меньше в 2-3 раза.
Названный выше ГОСТ фиксирует порядок взаимодействия служб, отвечающих за обработку воды. Также в этом документе можно найти ключевые требования по проведению замеров качества и самого процесса очистки. Очищенная питьевая вода в норме должна подходить под санитарно-гигиенические требования, после чего может использовать в бытовых и пищевых нуждах. То есть подобную жидкость не опасно применять для производства потребляемых человеком продуктов.
Достоинства метода УФ-обеззараживания питьевой воды:
-
Используемая для УФ-обеззараживания воды лампа, благодаря своей мощности и используемой частоте, уничтожает до 99 % всех известных на данный момент бактерий и микроорганизмов. Для человека технология абсолютно безопасна – это в конце XX века доказали американские ученые. Система успешно борется с микроорганизмами-возбудителями и переносчиками опасных болезней ЖКТ.
-
Структура воды не изменяется под воздействием УФ, не образуются и не вносятся чужеродные вещества. Немаловажно, что сохраняется естественный вкус жидкости.
-
Особая технология включения запускает систему очистки автоматически и позволяет ей контролировать дозу излучения без вмешательства со стороны человека.
-
Процесс работы установки по УФ-обеззараживанию воды очень просто контролировать. Практически все методы обработки предполагают строгое отслеживание используемой дозы очищающего вещества. Вне зависимости от того, как много или мало реагента попадет в воду, последняя оказывается непригодной для употребления. А в нашем случае изменение дозы облучения никоим образом не скажется на итоговом продукте и состоянии потребителей.
-
Сокращаются временные затраты, поскольку на полное обеззараживание воды ультрафиолетом требуется не более 5–10 секунд. Именно этот срок требуется волнам, чтобы от лампы пройти через весь объем воды – ни одна другая технология не действует так же быстро. Кроме того, для УФ-обработки не требуются специальные установки или резервуары для хранения готовой жидкости.
Отрицательные характеристики технологии УФ-обеззараживания воды:
-
Ультрафиолет не позволяет обезвредить все микроорганизмы, так как ряд из них обладает повышенной устойчивостью к такому типу излучения. Но чистую питьевую воду можно получить при помощи разных способов, поэтому если жидкость насыщена подобными бактериями или вирусами, для ее обработки выбирают другую методику.
-
Необходим контроль содержания железа, иными словами в воде не должно находиться взвешенных частиц разного рода загрязнителей. Только при соблюдении этой нормы обработка приведет к желаемым результатам. В данном случае работает такое правило: чем больше частиц крупного размера содержится в жидкости, тем ниже качество обработанной воды.
-
Необходима предварительная очистка жидкости, позволяющая добиться удовлетворительного результата. На этом этапе УФ-обеззараживания из воды удаляются все примеси, находящиеся в ней крупнодисперсные частицы. После обработки ультрафиолетом необходимо также проводить хлорирование.
-
Ультрафиолетовая установка имеет однократное действие, то есть даже после обработки в жидкости могут снова появиться бактерии, вирусы.
Поскольку данная технология имеет немало серьезных минусов, обычно ее применяют вместе с другими способами обработки жидкости. Ультрафиолет может использоваться в качестве самостоятельного средства только при условии, что вода лишена иных загрязнителей.
Читайте материал по теме: Обеззараживание питьевой воды
УФ-оборудование для обеззараживания воды
Современные установки для УФ-обеззараживания питьевой воды представляют собой камеру обеззараживания из нержавеющей стали. Реже для этих целей используется пластик.
В таком сосуде находится ультрафиолетовая лампа, защищенная от попадания в нее воды специальным защитным покрытием. За время, что поток воды находится в подобном фильтре под УФ-излучением, уничтожаются все находящиеся в жидкости опасные микроорганизмы.
Подобным системам по УФ-обеззараживанию воды не требуется постоянной проверки со стороны человека, так как предусмотренный блок контроля автоматически включает лампу после подачи воды. Еще одно достоинство современных фильтров состоит в пультах дистанционного управления, позволяющих управлять работой системы. Также устройство способно сигнализировать о появившихся неисправностях.
Отдельно скажем об установках для стерилизации сточных вод. Они отличаются крупными габаритами, а перед входом в камеру часто присутствуют дополнительные фильтры для предварительной механической очистки поступающей жидкости.
Промышленные устройства для УФ-обеззараживания воды оснащаются большим количеством ламп – до нескольких десятков – поскольку такие системы должны за раз очищать немалые объемы жидкости.
Нужно регулярно выполнять замену светильников и очистку кварцевых защитных чехлов. Дело в том, что на чехлах собираются разного рода отложения, из-за которых снижается эффект от УФ-лучей. Подчеркнем: другого обслуживания подобная установка не требует.
Читайте материал по теме: Сорбционная очистка воды: для чего она нужна и где применяется
Условия эффективности УФ-обеззараживания воды
Наравне со всеми остальными технологиями, УФ-обеззараживание воды подчиняется ряду факторов, затрудняющих ее работу.
Ключевой показатель, влияющий на эффективность водоочистки – требуемая доза УФ-облучения. Она представляет собой произведение интенсивности облучения и его продолжительности. Кроме того, при расчете этого показателя обязательно учитывается характер микроорганизмов, содержащихся в исходной жидкости. Вид и тип представленных болезнетворных организмов влияют на их устойчивость к облучению, поэтому чем более они устойчивы, тем большее время требуется на УФ-обеззараживание воды.
Для повышения эффективности можно просто увеличить интенсивность излучения, но системы очистки не всегда позволяют сделать это, так как оснащаются однотипными ультрафиолетовыми лампами с волнами фиксированной длины и интенсивности. Вот почему при повышенной устойчивости бактерий приходится повышать продолжительность нахождения воды в реакционной камере. Также при этом учитывается объем бактерий и микробов в определенной воде.
Еще одним фактором, влияющим на качество работы установок УФ-обеззараживания воды, являются свойства самой жидкости, а именно состав и процентное содержание примесей. Специалисты используют нормативы цветности, содержания в воде железа, крупнодисперсных загрязнителей, при превышении которых эффективность обработки воды ультрафиолетом резко снижается, а иногда даже стремится к нулю.
Поясним, в чем причина: крупнодисперсные примеси и частицы железа выступают в роли своеобразного щита для части микроорганизмов, содержащихся в жидкости. В результате те не подвергаются необходимому излучению и способны снизить качество уже, казалось бы, обработанной воды. Вот почему перед УФ-обеззараживанием необходимо провести обезжелезивание воды.
Эффективность проведенной обработки ультрафиолетом проверяют при помощи измерения содержания в жидкости бактерий кишечной палочки, то есть организма с наивысшей стойкостью к такого рода воздействию.
Как работают и чем отличаются УФ-установки для обеззараживания воды
Существует довольно богатый выбор систем, в которых применяются установки УФ-обеззараживания воды. Состав последних всегда остается стандартным – это облучающие воду ультрафиолетовые лампы в кварцевых чехлах. Тем не менее, не любая система ультрафиолетового обеззараживания жидкости является универсальной и оказывается пригодна для работы в любых условиях. Если вам требуется УФ-обеззараживание воды и вы собираетесь купить подобную установку, необходимо представлять себе ряд факторов, влияющих на ее выбор.
В первую очередь необходимо учитывать такой показатель как производительность устройства. Все установки УФ-обеззараживания воды построены на принципе непрерывного действия, поэтому их эффективность зависит от часовой скорости пропуска воды через установку, иными словами, расхода воды. В принципе, использование накопительных баков могло бы повысить уровень результативности, но в данном случае их применение недопустимо, ведь УФ-излучение лишено последействия, то есть в воду в баке снова попадут загрязнения.
Другой крайне важный при выборе установки для УФ-обеззараживания воды показатель – коэффициент пропускания водой УФ-излучения, он непосредственно связан со свойствами поступающей жидкости. Можно говорить о низком коэффициенте, если речь идет о мутной воде с высоким содержанием крупнодисперсных примесей. В этом случае необходимо повысить дозу облучения.
Последний существенный параметр подобных установок состоит в мощности устройства или используемой при обеззараживании воды дозе облучения. Необходимая доля УФ-излучения зависит от характера и содержания в конкретной воде микроорганизмов. Напомним, что разные типы бактерий и микробов имеют отличающуюся устойчивость к облучению – именно это их свойство влияет на условия УФ-обеззараживания воды.
Сразу скажем, что самым простым из всех перечисленных параметров является производительность, тогда как для определения двух оставшихся требуется проведение полного химического анализа воды в лабораторных условиях.
Повторим, что любая установка для УФ-обеззараживания состоит из специальной пластиковой либо стальной камеры, внутри которой установлена УФ-лампа в специальной защитной оболочке, препятствующей попаданию влаги. Подобные системы не нуждаются в постоянном присутствии обслуживающего персонала, поскольку лампа загорается по сигналу, поступающему от блока контроля, – установка включается сразу после того, как вода попадает внутрь. У таких устройств могут быть предусмотрены пульты дистанционного управления, также приборы способны подавать сигналы о возможных неполадках в системе.
Используемые в промышленности установки УФ-обеззараживания воды отличаются немалыми размерами, вызванными дополнительной установкой фильтров для механической очистки поступающей жидкости. За счет такого усложнения системы удается добиться более быстрой и эффективной обработки больших объемов жидкости. Кроме того, в промышленных установках используется одновременно по несколько десятков УФ-ламп.
Для применения в домашних условиях, к примеру, для очистки небольших водоемов, прудов, вполне подходят упрощенные фильтры с УФ-лампой. На рынке представлены модели от разных производителей, но все они имеют гораздо более доступную цену, нежели их промышленные аналоги.
Как мы уже говорили, все УФ-фильтры обладают практически идентичной конструкцией, в которую входит резервуар, патрубок и лампа. Жидкость попадает в емкость, после чего включается лампа и начинается процесс обеззараживания воды. Далее очищенная жидкость через трубы выводится из системы очистки.
Читайте материал по теме: Насыщение воды кислородом: для чего это нужно делать и как
Из чего состоит установка УФ-обеззараживания воды
- Лампы.
Чаще всего в качестве источника УФ-излучения (УФИ) выступают лампы низкого давления (НД). Последние могут быть ртутными, где используется ртуть в свободном состоянии, и амальгамными, в которых та же ртуть находится в связанном состоянии. Во вторую группу входят и лампы высокого давления (за рубежом их называют лампами среднего давления (СД)). На данный момент активнее всего используются источники низкого давления, а именно их новейший вариант, – амальгамные лампы. Они положительно отличаются от своих аналогов повышенной энергоэффективностью и безопасностью.
- Кварцевые чехлы.
Функции кварцевых чехлов состоят в предотвращении контакта лампы с водой и регулировании температуры – без последнего невозможно нормальное функционирование ламп. О качестве этого элемента установки для УФ-обеззараживания воды можно судить по его достаточной прозрачности для УФИ, ведь только в этом случае вода получит необходимую дозу облучения. Лидеры рынка производителей подобных систем применяют стекло из кварца, отличающееся повышенным пропусканием УФИ с длиной волны 254 нм. Из этого материала получаются кварцевые изделия с очень высокой точностью изготовления.
- ЭПРА.
Под этой аббревиатурой скрываются устройства для пуска, поддержания работы и регулировки ламп. Тип ЭПРА, качество, алгоритмы действия влияют на продолжительность службы ламп, максимальное количество включений/выключений (чем выше данный показатель, тем качественнее и дольше прослужит оборудование), стабильность излучения лампы от колебаний напряжения питающей сети. Если в устройстве по УФ-обеззараживанию воды используются качественные комплектующие и правильно разработаны алгоритмы, то лампы могут служить до 16 000 ч, а число включений/выключений возрастает до 5000.
- УФ-датчики.
Чисто визуально невозможно оценить эффективность работы установки, это просто опасно, а человеческий глаз не способен различить УФ-излучение. Поэтому такие системы комплектуются контроллерами, отвечающими за проверку изменения потока бактерицидного излучения. Однако стоит понимать, что простые системы обычно не имеют подобных датчиков либо на них устанавливаются самые дешевые устройства, которые, к сожалению, реагируют даже на видимый человеку спектр, а значит, не способны выявить эффективность работы устройства.
Профессиональные системы, имеющие международные сертификаты качества, оснащаются селективными УФИ-датчиками. Такие приборы реагируют исключительно на снижение бактерицидного облучения, что является необходимым показателем для оценки работы прибора. Этот узел считается обязательным элементом конструкции установок УФ-обеззараживания воды.
- Пульт управления.
Данная составляющая системы УФ-обеззараживания воды необходима для контроля и управления УФ-оборудованием. В профессиональных УФ-системах пульты обычно обладают функцией подключения к ПК, к автоматизированным системам контроля и управления процессами водоподготовки, за счет чего управлять установкой можно и дистанционно. Также современные пульты имеют удобный интерфейс, высокий класс электробезопасности, высокую степень защиты от пыли и влаги.
- Камера обеззараживания.
В данном случае речь идет об одном из важнейших элементов системы для УФ-обеззараживания воды, влияющем на ее эффективность. Именно в данной камере размещаются УФ-лампы. Также здесь находятся распределители потоков, которые необходимы для перемешивания и выравнивания жидкости. Именно от этих элементов зависит качество очистки и надежность всего процесса, а также они сокращают гидравлические потери.
Однако важна не только сама конструкция камеры, но и ее прочность, стойкость к коррозии, герметичность и отсутствие вредных выделений из материала под действием УФ-излучения. Поэтому многие современные производители отдают предпочтение такому материалу, как качественная нержавеющая сталь AISI 316, AISI 304. Если же речь идет о взаимодействии системы для УФ-обеззараживания воды с агрессивными средами, такими как морская вода, то используется дуплексная сталь.
- Системы, очищающие защитные чехлы.
В любой воде до обеззараживания присутствуют разного рода примеси, все они оседают на кварцевых кожухах, приводя к загрязнению последних. В итоге снижается уровень интенсивности, уменьшается доза излучения, получаемая жидкостью.
Существуют разные причины, вызывающие загрязнение чехлов: это и оседание взвешенных частиц, и их налипание на поверхность чехла из-за турбулентных столкновений, и пр. На поверхности чехла лампы среднего давления (полихроматический спектр излучения) происходит множество фотохимических реакций, провоцирующих формирование трудноудаляемых загрязнений. Чтобы УФ-обеззараживание воды приносило желаемый результат, в системе может быть предусмотрена механическая очистка или реагентная промывка чехлов.
Первый вариант позволяет очищать кварцевые чехлы без отключения оборудования. Но стоит понимать, что таким образом невозможно полностью восстановить первоначальные оптические свойства защитного покрытия. Второй способ зарекомендовал себя как более надежный, простой и выгодный по финансовым и энергетическим затратам, но при нем происходит полное отключение установки.
Читайте материал по теме: Дезинфекция питьевой воды - как провести и на что обратить внимание
Как правильно выбирать УФ-системы обеззараживания воды
Как вы уже поняли, необходимыми условиями качественного УФ-обеззараживания воды являются правильный выбор оборудования и метода очистки. Все существующие на данный момент системы имеют разную производительность. Но так как облучение в установке происходит непрерывно, производительность зависит от скорости воды, с которой та протекает через установку.
Безусловно, в случае с любой другой системой очистки можно было бы в разы повысить производительность при помощи добавления в систему накопительного бака. Но в нашей ситуации подобное изменение конструкции оказывается недопустимым, ведь действие лучей носит однократный характер. Иными словами, произойдет повторное заражение уже чистой жидкости после того, как она соединиться в баке с грязной.
Выбирая систему для УФ-обеззараживания воды, обратите внимание на то, какому облучению в ней подвергается вода. Если вы имеете дело с довольно мутной жидкостью, лучше вложить средства в покупку мощного оборудования, иначе вы не получите желаемого эффекта от обработки воды. Количество микроорганизмов в воде также влияет на дозировку облучения. Напомним простое правило: чем их больше, тем большая доза требуется.
Сегодня на рынке представлен большой выбор различных вариантов устройств, отличающихся по характеристикам и ценам. Поэтому чтобы не потеряться среди всего этого многообразия, рекомендуем ознакомиться с механизмами работы систем для УФ-обеззараживания воды и заранее сделать анализ воды.
При покупке ультрафиолетового стерилизатора воды проверьте такие показатели:
-
количество, виды микроорганизмов;
-
необходимый уровень дезинфекции;
-
температура;
-
скорость потока;
-
количество УФ-излучения.
Уничтожение определенного вида микроорганизмов в системе для УФ-обеззараживания воды требует конкретной дозы ультрафиолета, поэтому не забудьте провести анализ воды – так вы узнаете, какие виды бактерий содержатся именно в вашем образце жидкости и подберете оптимальную порцию излучения.
Отличаться может и степень требуемой дезинфекции. Так, питьевая вода требует 100%-ной очистки, тогда как в случае со сточными водами вовсе не обязательно уничтожать все загрязнения.
Компании-производители предлагают УФ-лампы для обеззараживания воды двух типов, неодинаково реагирующие на температуру жидкости. Лампы со средним давлением больше подходят для работы с температурой до +85 °С, а приборы с низким давлением действуют при температурном режиме в пределах +16…+20 °С.
Обратите внимание на такой показатель, как «прозрачность» – он говорит о количестве ультрафиолета, которое может проходить через воду. На эти цифры воздействуют вещества, содержащиеся в жидкости, поскольку они способны задерживать и сокращать количество УФ-лучей. В итоге наблюдается недостаточная эффективность обеззараживания.
Устройство для УФ-обеззараживания воды вы можете приобрести в компании Biokit, которая предлагает широкий выбор систем обратного осмоса, фильтры для воды и другое оборудование, способное вернуть воде из-под крана ее естественные характеристики.
Специалисты нашей компании готовы помочь вам:
-
подключить систему фильтрации самостоятельно;
-
разобраться с процессом выбора фильтров для воды;
-
подобрать сменные материалы;
-
устранить неполадки или решить проблемы с привлечением специалистов-монтажников;
-
найти ответы на интересующие вопросы в телефонном режиме.
Доверьте очистку воды системам от Biokit – пусть ваша семья будет здоровой!